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ABSTRACT: DAS-81910-7 cotton is a transgenic event that was transformed to contain the aad-12 and pat genes. These genes
code for the AAD-12 and PAT proteins, which confer tolerance to the herbicides 2,4-D and glufosinate, respectively. Crop
composition studies were conducted with DAS-81910-7 cotton (both nonsprayed and sprayed with 2,4-D and glufosinate) to
comply with requirements of regulatory authorities responsible for evaluating crop safety. Results indicate compositional
equivalence between DAS-81910-7 cottonseed and nontransgenic cottonseed and between sprayed and nonsprayed DAS-81910-7
cottonseed. This study builds on the results from many prior studies which support the conclusion that transgenesis is less likely to
unexpectedly alter the composition of crops as compared with traditional breeding.
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Bl INTRODUCTION

DAS-81910-7 cotton was transformed to contain the aad-12
and pat genes. These genes code for the AAD-12 and PAT
proteins, which confer tolerance to the herbicides 2,4-D and
glufosinate, respectively.”” Although crop composition studies
(e.g, analysis of nutrient and antinutrient levels) are almost
universally required by regulatory authorities to support the safety
assessment of transgenic crops, their value has been questioned
on the basis of the substantial literature generated over the past
two decades indicating that transgenesis is less unpactful on
composition compared with traditional breeding.>* Crop
composition studies represent the single most costly regulatory
study in support of genetically modified crops (typically in excess
of US. $1 million per study), and the current body of literature,
although extensive, has not yet obviated this regulatory require-
ment.” This high regulatory cost, in part, discourages public sector
scientists from pursuing transgenic approaches intended to
improve agriculture in the developing world. Therefore, it is
imperative to continue to augment the peer-reviewed literature
with results from such studies. Here we report results from a study
designed to investigate the compositional equivalence between
DAS-81910-7 and nontransgenic cottonseed.

Composition studies for herbicide-tolerant crops explicitly
require the inclusion of herbicide-sprayed and nonsprayed
entries in some regulatory jurisdictions.” Herbicides have been
used widely on nontransgenic crops for many decades without
concern for adverse effects on crop composition and without
reports of any adverse health effects related to altered crop
composition. The herbicide 2,4-D has been used commercially
on nontransgenic crops for over 60 years and has been reported
to act as a growth regulator when applied to nontransgenic
crops;' therefore, one might expect some alteration of crop
composition due to application of 2,4-D to DAS-81910-7
cotton, even though such changes would be expected to be
minor and not adverse on the basis of 2,4-D’s history of safe use
on nontransgenic crops. Here we report the composition of
DAS-81910-7 cottonseed compared with nontransgenic cotton-
seed and the effects of spraying 2,4-D (and glufosinate) on
DAS-81910-7 cottonseed composition.
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B MATERIALS AND METHODS

The composition of cottonseed from event DAS-81910-7, a near-
isogenic nontransgenic comparator (isoline), and six nontransgenic
commercial varieties (ALL-TEX 1203, ALL-TEX A102, ALL-TEX
LA122, Paymaster HS 200, Rader 271, and Speed) was investigated for
samples collected from field plots grown at eight sites in the United
States (subexperiment 1). Transgenic and isoline entries were grown
at all eight field sites, and three of the six commercial varieties were
grown at each 51te to comply with European Food Safety Authority
(EFSA) guidance.’ To evaluate potential compositional differences
between DAS-81910-7 cotton with and without application of 2,4-D
and glufosinate, a second subexperiment (subexperiment 2) was
conducted at each trial location, which contained two entries, DAS-
81910-7 sprayed with a tank mix of 2,4-D and glufosinate and a
nonsprayed DAS-81910-7 entry. Subexperiment 2 (in which 2,4-D and
glufosinate were applied) was spatially separated from subexperiment 1
(in which no 2,4-D or glufosinate was applied) to exclude the potential
for 2,4-D to affect the composition of non-2,4-D-tolerant entries in the
first subexperiment (isoline and nontransgenic commercial varieties).

Experiments were located near Tallassee, AL; Sycamore, GA;
Washington, LA; Fisk, MO; Greenville, MS; Mebane, NC; Groom,
TX; and East Bernard, TX, USA. Four replicate plots of each entry
were established at each site, with each plot consisting of four rows
that were 7.6 m long. The seed spacing was approximately 7.6 cm, and
the row spacing was approximately 76 cm. Each four-row plot was
separated from adjacent plots by two border rows. The entries in each
subexperiment were arranged in a randomized complete block design,
and the two subexperiments were separated by 30.5 m. Standard
commercial agronomic practices (e.g., insect, weed, and disease control)
were implemented at each field site (uniformly across all entries in the
trial) to produce a commercially acceptable crop.

For the herbicide-treated DAS-81910-7 entry in subexperiment 2,
the spray volume was approximately 187 L/ha, and all applications
included 2% v/v ammonium sulfate. The 2,4-D (GF-2654 choline
formulation), at 1120 g ae/ha, and glufosinate (Ignite 280 SL), at
596 g ai/ha, were applied in a tank mixture as two broadcast applica-
tions (at the 3- and 6-node stages).
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Cottonseed samples were collected at maturity from each plot, acid
delinted, and shipped to Covance Laboratories Inc. (Madison, WI,
USA) for compositional analysis. Analyses included proximates
(moisture, carbohydrates, ash, crude fat, and protein), fiber [crude
fiber, total dietary fiber, neutral detergent fiber (NDF), and acid
detergent fiber (ADF)], minerals (calcium, copper, iron, magnesium,
manganese, molybdenum, phosphorus, potassium, selenium, sodium,
sulfur, and zinc), amino acids (alanine, arginine, aspartic acid, cystine,
glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine,
phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and
valine), fatty acids (8:0 caprylic, 10:0 capric, 12:0 lauric, 14:0 myristic,
14:1 myristoleic, 15:0 pentadecanoic, 15:1 pentadecenoic, 16:0 palmitic,
16:1 palmitoleic, 17:0 heptadecanoic, 17:1 heptadecenoic, 18:0 stearic,
18:1 oleic, 18:2 linoleic, 18:3 linolenic, 18:3 y-linolenic, 20:0 arachidic,
20:1 eicosenoic, 20:2 eicosadienoic, 20:3 eicosatrienoic, 20:4 arach-
idonic, and 22:0 behenic acids), vitamins [f-carotene, thiamin
hydrochloride (thiamine HCI), riboflavin, niacin, pyridoxine hydro-
chloride (pyridoxine HCI), folic acid, and a-tocopherol], and
antinutrients (dihydrosterculic acid, malvalic acid, sterculic acid, free
gossypol, and total gossypol).

Samples were received frozen and remained frozen for the duration
of the analytical phase until being removed for preparation or analysis.
Samples were cryogenically ground to a homogeneous state using a
blender and liquid nitrogen prior to assay. Methods of analysis have
been published previously” with the following exceptions.

Crude fiber was quantitated as the loss on ignition of dried residue
remaining after digestion of the samples with 1.25% sulfuric acid
and 1.25% sodium hydroxide solutions under specific conditions.®
For molybdenum and sulfur the samples were wet-ashed with nitric
acid using microwave digestion. Using inductively coupled plasma
mass spectrometry, the amount of each element was determined by
comparing the counts generated by the unknowns with those
generated by standard solutions of known concentrations.” For
selenium, the samples were closed-vessel microwave digested with
nitric acid and water. After digestion, the solutions were brought to a
final volume with water. To normalize the organic contribution
between samples and standards, a dilution was prepared for analysis
that contained methanol. The selenium concentration was determined
with Se78 using an inductively coupled plasma—mass spectrometer
with a dynamic reaction cell by comparing the counts generated by
standard solutions.'® For fatty acids, the lipid was extracted and
saponified with 0.5 N sodium hydroxide in methanol. The
saponification mixture was methylated with 14% boron trifluoride in
methanol. The resulting methyl esters were extracted with heptane
containing an internal standard. The methyl esters of the fatty acids
were analyzed by gas chromatography using external standards for
quantification.""** For thiamin HCI, the samples were subjected to acid
hydrolysis to denature matrix and free bound thiamin analogues. The
treated sample was brought to volume, filtered, and injected onto a
reversed phase column using a high-performance liquid chromatog-
raphy system with a postcolumn derivatization reaction coil and
detected via a fluorescence detector. As thiamin monophosphate is not
completely reacted, thiamin and thiamin monophosphate were both
quantitated separately. Final results are the sum of the two components
converted to thiamin HCI form."

For cyclopropanoid fatty acids, the total lipid fraction was extracted
from the samples using chloroform and methanol. A portion of the
lipid fraction was then saponified with a mild alkaline hydrolysis. The
free fatty acids were extracted with ethyl ether and hexane. The free
fatty acids were then converted to their phenacyl derivatives with
2-bromoacetophenone. The derivatized extracts were injected on a
high-performance liquid chromatography system equipped with an
ultraviolet detector. The relative percent of total fatty acids for each
peak was calculated from peak areas.'*

For free gossypol, the samples were extracted with an aqueous
acetone solution and filtered. Duplicate aliquots were made, and the
active aliquot was reacted with aniline with heat applied in a water
bath. Active and inactive aliquots were brought to volume with an
aqueous isopropyl alcohol solution and read on a spectrophotometer
at 440 nm. The absorbance difference was then compared with a linear

curve calculated from standards that were aliquoted, reacted, and read
in the same fashion as the samples."® Total gossypol defines gossypol
and gossypol derivatives, both free and bound, in cottonseed products
that are capable of reacting with 3-amino-1-propanol in dimethylform-
amide solution to form a diaminopropanol complex, which then
reacts with aniline to form dianilinogossypol under the conditions of
the method. Gossypol, gossypol analogues, and gossypol derivatives
having an available aldehyde moiety were measured by using the
method."

Analysis of variance (ANOVA) was conducted across test sites for
each subexperiment using a mixed model."” Entry was considered a
fixed effect; location, block within location, and location-by-entry were
designated random effects. Paired contrasts between the nonsprayed
DAS-81910-7 entry and the isoline in subexperiment 1 and between
nonsprayed and sprayed DAS-81910-7 entries in subexperiment 2 were
made using ¢ tests. Multiplicity was addressed by applying a false-
discovery-rate adjustment to the P values, and differences were
considered significant at the 95% confidence level.'®"? Analytes were
excluded from the statistical analysis when >50% of the data were less
than the limit of quantitation (<LOQ). These analytes were not suitable
to include in the ANOVA because data sets in which most points are
excluded or set to a given nominal value have substantially up-biased
data or have improperly underestimated variability, respectively. The
range of values for the nontransgenic commercial cottonseed reference
varieties was determined to put any statistically significant differences
into context. In addition, literature ranges for nontransgenic cottonseed
composition were assembled for further contextualization.”*~>¢

B RESULTS AND DISCUSSION

The composition of DAS-81910-7 cottonseed was compared
with that of a near-isogenic nontransgenic line (isoline) and
six nontransgenic commercial lines grown at eight field sites
(subexperiment 1). A separate experiment was conducted at the
same eight field sites (subexperiment 2) to determine if the
composition of DAS-81910-7 cottonseed was affected when
plants were sprayed with 2,4-D and glufosinate. Samples were
evaluated for 73 analytes including proximates and fiber,
minerals, amino acids, fatty acids, vitamins, and antinutrients.
The following analytes were excluded from the statistical
analyses because >50% of the data were less than the method
LOQ: 8:0 caprylic, 10:0 capric, 12:0 lauric, 14:1 myristoleic,
15:0 pentadecanoic, 1S5:1 pentadecenoic, 16:1 palmitoleic,
17:0 heptadecanoic, 17:1 heptadecenoic, 18:3 y-linolenic,
20:2 eicosadienoic, 20:3 eicosatrienoic, 20:4 arachidonic, and
f-carotene. Selenium was the only analyte included in the
statistical analysis for which <LOQ values were present.
Approximately 27% of the data for both the transgenic entries
and isoline entry were observed to be <LOQ, and these data
were excluded from the analysis due to the nearly equal
distribution among entries.

Nonsprayed DAS-81910-7 Cottonseed. Of the 59
compositional analytes included in the statistical analysis, 7
analytes differed significantly between DAS-81910-7 cottonseed
and the near-isogenic nontransgenic cottonseed in subexperi-
ment 1 (Tables 1—6). The manganese level was 15% lower in
the transgenic entry compared with the isoline (Table 2). It is
clear from Figure 1 that manganese levels within the transgenic
entries were actually more similar to most of the nontransgenic
commercial varieties than were those from the isoline,
indicating that manganese levels within the transgenic entries
were normal for the crop. The total gossypol level was 12%
lower in the transgenic entry compared with the isoline (Table 6).
Gossypol is an antinutrient, so a marginal decrease in this analyte,
if it were to occur across varieties, would not represent a safety
concern. However, total gossypol levels were normal for the
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Figure 2. Site means for entries in subexperiments 1 and 2 for 14:0 muyristic acid, 16:1 palmitoleic acid, 18:1 oleic acid, and 18:2 linoleic acid
(percent of total fatty acids). Shaded area represents the literature range for each analyte. Locations are represented by the following symbols: open
circle = AL; solid circle = Groom, TX; + = LA; X = GA; open triangle = MO; solid triangle = East Bernard, TX; open square = MS; open diamond =
NC. 1910 = DAS-81910-7. Note that each nontransgenic commercial variety was included, on average, at only half of the sites, so the spread of data
for these entries is expected to be less than that for the control and transgenic entries, which were present at all eight sites.

transgenic entries compared with other nontransgenic cotton Figures 1 and 2 that variation among nontransgenic commercial
varieties (Figure 1). The malvalic acid level for the transgenic lines was greater than differences between the isoline entry and
entry was 10% higher compared with the isoline (Table 6); the transgenic entries.

however, levels were, once again, normal for nontransgenic cotton Effects of Herbicides. Among the 59 analytes included in
as a whole (Figure 1). the compositional analysis for subexperiment 2, there were no

Four fatty acids also differed significantly between the significant differences between the nonsprayed DAS-81910-7
nonsprayed DAS-81910-7 entry and the isoline entry in entry and the DAS-81910-7 entry sprayed with 2,4-D and

subexperiment 1 (Table 4). The 14:0 myristic, 16:1 palmitoleic, glufosinate (Tables 1—6). The lack of spurious results in this
and 18:1 oleic acid levels for the transgenic entry were 9, 7, and subexperiment may be related to the small number of entries
6% lower, respectively, compared with the isoline, whereas the and the resulting small size of experimental blocks in the field
18:2 linoleic acid level for the transgenic entry was 2% higher (decrease in heterogeneity within blocks).
compared with the isoline. In addition to the small magnitude Conclusions. The composition of DAS-81910-7 cottonseed
of these differences (<10% change from isoline), examination was found to be normal for cotton. Spraying 2,4-D and
of site means for the transgenic and nontransgenic entries in glufosinate did not significantly affect the composition of the
this study indicates no meaningful differences for these fatty cottonseed derived from this transgenic event. The ability to
acids compared with the commercial nontransgenic varieties detect small differences as statistically significant between the
included in this study (Figure 2). transgenic and isoline entries for a number of analytes demon-
It is noteworthy that, separate from any potential effect of strates the power of the experiment to highlight differences
transgenesis, normal intervarietal variation is expected to result smaller than that seen between conventional nontransgenic
in compositional differences between a parent line and lines varieties (Figures 1 and 2). This study builds on the results
generated from single-plant selections from that same line (or from many prior studies supporting transgenesis as less likely to
from single cells as in the case of tissue-culture regenerated unexpectedly perturb the composition of crops compared with
transgenic or nontransgenic plants).**” It is also clear from traditional breeding.>*
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